Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Small ; : e2400415, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698600

RESUMO

Highly flexible and superelastic aerogels at large deformation have become urgent mechanical demands in practical uses, but both properties are usually exclusive. Here a trans-scale porosity design is proposed in graphene nanofibrous aerogels (GNFAs) to break the trade-off between high flexibility and superelasticity. The resulting GNFAs can completely recover after 1000 fatigue cycles at 60% folding strain, and notably maintain excellent structural integrity after 10000 cycles at 90% compressive strain, outperforming most of the reported aerogels. The mechanical robustness is demonstrated to be derived from the trans-scale porous structure, which is composed of hyperbolic micropores and porous nanofibers to enable the large elastic deformation capability. It is further revealed that flexible and superelastic GNFAs exhibit high sensitivity and ultrastability as an electrical sensors to detect tension and flexion deformation. As proof, The GNFA sensor is implemented onto a human finger and achieves the intelligent recognition of sign language with high accuracy by multi-layer artificial neural network. This study proposes a highly flexible and elastic graphene aerogel for wearable human-machine interfaces in sensor technology.

2.
Plant Biotechnol J ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561972

RESUMO

Cell fate determination and primordium initiation on the placental surface are two key events for ovule formation in seed plants, which directly affect ovule density and seed yield. Despite ovules form in the marginal meristematic tissues of the carpels, angiosperm carpels evolved after the ovules. It is not clear how the development of the ovules and carpels is coordinated in angiosperms. In this study, we identify the S. lycopersicum CRABS CLAW (CRC) homologue SlCRCa as an essential determinant of ovule fate. We find that SlCRCa is not only expressed in the placental surface and ovule primordia but also functions as a D-class gene to block carpel fate and promote ovule fate in the placental surface. Loss of function of SlCRCa causes homeotic transformation of the ovules to carpels. In addition, we find low levels of the S. lycopersicum AINTEGUMENTA (ANT) homologue (SlANT2) favour the ovule initiation, whereas high levels of SlANT2 promote placental carpelization. SlCRCa forms heterodimer with tomato INNER NO OUTER (INO) and AGAMOUS (AG) orthologues, SlINO and TOMATO AGAMOUS1 (TAG1), to repress SlANT2 expression during the ovule initiation. Our study confirms that angiosperm basal ovule cells indeed retain certain carpel properties and provides mechanistic insights into the ovule initiation.

3.
JMIR Cardio ; 8: e53421, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38640472

RESUMO

BACKGROUND: Amyloidosis, a rare multisystem condition, often requires complex, multidisciplinary care. Its low prevalence underscores the importance of efforts to ensure the availability of high-quality patient education materials for better outcomes. ChatGPT (OpenAI) is a large language model powered by artificial intelligence that offers a potential avenue for disseminating accurate, reliable, and accessible educational resources for both patients and providers. Its user-friendly interface, engaging conversational responses, and the capability for users to ask follow-up questions make it a promising future tool in delivering accurate and tailored information to patients. OBJECTIVE: We performed a multidisciplinary assessment of the accuracy, reproducibility, and readability of ChatGPT in answering questions related to amyloidosis. METHODS: In total, 98 amyloidosis questions related to cardiology, gastroenterology, and neurology were curated from medical societies, institutions, and amyloidosis Facebook support groups and inputted into ChatGPT-3.5 and ChatGPT-4. Cardiology- and gastroenterology-related responses were independently graded by a board-certified cardiologist and gastroenterologist, respectively, who specialize in amyloidosis. These 2 reviewers (RG and DCK) also graded general questions for which disagreements were resolved with discussion. Neurology-related responses were graded by a board-certified neurologist (AAH) who specializes in amyloidosis. Reviewers used the following grading scale: (1) comprehensive, (2) correct but inadequate, (3) some correct and some incorrect, and (4) completely incorrect. Questions were stratified by categories for further analysis. Reproducibility was assessed by inputting each question twice into each model. The readability of ChatGPT-4 responses was also evaluated using the Textstat library in Python (Python Software Foundation) and the Textstat readability package in R software (R Foundation for Statistical Computing). RESULTS: ChatGPT-4 (n=98) provided 93 (95%) responses with accurate information, and 82 (84%) were comprehensive. ChatGPT-3.5 (n=83) provided 74 (89%) responses with accurate information, and 66 (79%) were comprehensive. When examined by question category, ChatGTP-4 and ChatGPT-3.5 provided 53 (95%) and 48 (86%) comprehensive responses, respectively, to "general questions" (n=56). When examined by subject, ChatGPT-4 and ChatGPT-3.5 performed best in response to cardiology questions (n=12) with both models producing 10 (83%) comprehensive responses. For gastroenterology (n=15), ChatGPT-4 received comprehensive grades for 9 (60%) responses, and ChatGPT-3.5 provided 8 (53%) responses. Overall, 96 of 98 (98%) responses for ChatGPT-4 and 73 of 83 (88%) for ChatGPT-3.5 were reproducible. The readability of ChatGPT-4's responses ranged from 10th to beyond graduate US grade levels with an average of 15.5 (SD 1.9). CONCLUSIONS: Large language models are a promising tool for accurate and reliable health information for patients living with amyloidosis. However, ChatGPT's responses exceeded the American Medical Association's recommended fifth- to sixth-grade reading level. Future studies focusing on improving response accuracy and readability are warranted. Prior to widespread implementation, the technology's limitations and ethical implications must be further explored to ensure patient safety and equitable implementation.

4.
Chemphyschem ; 25(7): e202400213, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38488296

RESUMO

The front cover artwork is provided by Rui Cao's group at Shaanxi Normal University. The image shows the design of Co-porphyrin-engineered phenolic resins with intramolecular phenolic hydroxyl groups to facilitate proton and electron transfers for efficient oxygen electrocatalysis, which is bioinspired by cytochrome c oxidases, and shows the excellent performance of Zn-air batteries assembled with the hybrid material. Read the full text of the Research Article at 10.1002/cphc.202400017.

5.
IEEE Trans Image Process ; 33: 2213-2225, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38470582

RESUMO

Video anomaly detection (VAD) has been paid increasing attention due to its potential applications, its current dominant tasks focus on online detecting anomalies, which can be roughly interpreted as the binary or multiple event classification. However, such a setup that builds relationships between complicated anomalous events and single labels, e.g., "vandalism", is superficial, since single labels are deficient to characterize anomalous events. In reality, users tend to search a specific video rather than a series of approximate videos. Therefore, retrieving anomalous events using detailed descriptions is practical and positive but few researches focus on this. In this context, we propose a novel task called Video Anomaly Retrieval (VAR), which aims to pragmatically retrieve relevant anomalous videos by cross-modalities, e.g., language descriptions and synchronous audios. Unlike the current video retrieval where videos are assumed to be temporally well-trimmed with short duration, VAR is devised to retrieve long untrimmed videos which may be partially relevant to the given query. To achieve this, we present two large-scale VAR benchmarks and design a model called Anomaly-Led Alignment Network (ALAN) for VAR. In ALAN, we propose an anomaly-led sampling to focus on key segments in long untrimmed videos. Then, we introduce an efficient pretext task to enhance semantic associations between video-text fine-grained representations. Besides, we leverage two complementary alignments to further match cross-modal contents. Experimental results on two benchmarks reveal the challenges of VAR task and also demonstrate the advantages of our tailored method. Captions are publicly released at https://github.com/Roc-Ng/VAR.

6.
Plant Physiol Biochem ; 207: 108415, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38324955

RESUMO

Salinization of land is globally increasing due to climate change, and salinity stress is an important abiotic stressor that adversely affects agricultural productivity. In this study, we assessed a halotolerant endophytic bacterium, Pseudoxanthomonas sp. JBR18, for its potential as a plant growth-promoting agent with multiple beneficial properties. The strain exhibited tolerance to sodium chloride concentration of up to 7.5 % in the R2A medium. In vitro evaluation revealed that strain JBR18 possessed proteolytic, protease (EC 3.4), and cellulase (EC 3.2.1.4) activities, as well as the ability to produce indole-acetic acid, proline, and exopolysaccharides. Compared with the controls, co-cultivation of Arabidopsis seedlings with the strain JBR18 improved plant growth, rosette size, shoot and root fresh weight, and chlorophyll content under salinity stress. Moreover, JBR18-inoculated seedlings showed lower levels of malondialdehyde, reactive oxygen species, and Na+ uptake into plant cells under salt stress but higher levels of K+. Additionally, seedlings inoculated with JBR18 exhibited a delayed response time and quantity of salt-responsive genes RD29A, RD29B, RD20, RD22, and KIN1 under salt stress. These multiple effects suggest that Pseudoxanthomonas sp. JBR18 is a promising candidate for mitigating the negative impacts of salinity stress on plant growth. Our findings may assist in future efforts to develop eco-friendly strategies for managing abiotic stress and enhancing plant tolerance to salt stress.


Assuntos
Arabidopsis , Plântula , Plântula/fisiologia , Arabidopsis/genética , Tolerância ao Sal , Bactérias , Estresse Fisiológico/genética
7.
Chemphyschem ; 25(7): e202400017, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38319009

RESUMO

Using functionalized supporting materials for the immobilization of molecular catalysts is an appealing strategy to improve the efficiency of molecular electrocatalysis. Herein, we report the covalent tethering of cobalt porphyrins on phenolic resins (PR) for improved electrocatalytic oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). A cobalt porphyrin bearing an alkyl bromide substituent was covalently tethered on phenolic resins, through the substitution reaction of alkyl bromides with phenolic hydroxyl groups, to afford molecule-engineered phenolic resins (Co-PR). The resulted Co-PR was efficient for electrocatalytic ORR and OER by displaying an ORR half-wave potential of E1/2=0.78 V versus RHE and an OER overpotential of 420 mV to get 10 mA/cm2 current density. We propose that the many residual phenolic hydroxyl groups on PR will surround the tethered Co porphyrin and play critical roles in facilitating proton and electron transfers. Importantly, Co-PR outperformed unmodified PR and PR loaded with Co porphyrins through simple physical adsorption (termed Co@PR). The zinc-air battery assembled using Co-PR displayed a performance comparable to that using Pt/C+Ir/C. This work is significant to present phenolic resins as a functionalized material to support molecular electrocatalysts and demonstrate the strategy to improve molecular electrocatalysis with the use of phenolic resin residues.

8.
Plant Commun ; 5(4): 100790, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38168638

RESUMO

Floral meristem termination is a key step leading to carpel initiation and fruit development. The frequent occurrence of heat stress due to global warming often disrupts floral determinacy, resulting in defective fruit formation. However, the detailed mechanism behind this phenomenon is largely unknown. Here, we identify CRABS CLAW a (SlCRCa) as a key regulator of floral meristem termination in tomato. SlCRCa functions as an indispensable floral meristem terminator by suppressing SlWUS activity through the TOMATO AGAMOUS 1 (TAG1)-KNUCKLES (SlKNU)-INHIBITOR OF MERISTEM ACTIVITY (SlIMA) network. A direct binding assay revealed that SlCRCa specifically binds to the promoter and second intron of WUSCHEL (SlWUS). We also demonstrate that SlCRCa expression depends on brassinosteroid homeostasis in the floral meristem, which is repressed by heat stress via the circadian factor EARLY FLOWERING 3 (SlELF3). These results provide new insights into floral meristem termination and the heat stress response in flowers and fruits of tomato and suggest that SlCRCa provides a platform for multiple protein interactions that may epigenetically abrogate stem cell activity at the transition from floral meristem to carpel initiation.


Assuntos
Solanum lycopersicum , Solanum lycopersicum/genética , Frutas/genética , Meristema , Flores/genética , Resposta ao Choque Térmico/genética
9.
ACS Sens ; 9(2): 577-588, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38254273

RESUMO

Revolutionary developments in analytical chemistry have led to the rapid development of self-powered photoelectrochemical (PEC) sensors. Different from conventional PEC sensors, self-powered PEC sensors do not require an external power source or complex devices for the sensitive detection of targets. As a result, these sensors have enormous application potential for the development of novel portable sensors. An increasing body of work is making excellent progress toward the implementation of self-powered PEC sensors for detection, but there have been no reviews to date. The present review first introduces the state of the art in the development of self-powered PEC sensors. Then, different types of self-powered PEC sensors are summarized and discussed in detail, including their current, power, and potential. Additionally, single- and dual-photoelectrode systems are classified and systematically compared. Finally, the current developments and major challenges that need to be addressed are also summarized. This review provides valuable insights into the current state of self-powered PEC sensors to promote further progress in this field.


Assuntos
Técnicas Biossensoriais , Fontes de Energia Elétrica
10.
IEEE Trans Pattern Anal Mach Intell ; 46(6): 4262-4279, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38252584

RESUMO

Lossy image compression is a fundamental technology in media transmission and storage. Variable-rate approaches have recently gained much attention to avoid the usage of a set of different models for compressing images at different rates. During the media sharing, multiple re-encodings with different rates would be inevitably executed. However, existing Variational Autoencoder (VAE)-based approaches would be readily corrupted in such circumstances, resulting in the occurrence of strong artifacts and the destruction of image fidelity. Based on the theoretical findings of preserving image fidelity via invertible transformation, we aim to tackle the issue of high-fidelity fine variable-rate image compression and thus propose the Invertible Continuous Codec (I2C). We implement the I2C in a mathematical invertible manner with the core Invertible Activation Transformation (IAT) module. I2C is constructed upon a single-rate Invertible Neural Network (INN) based model and the quality level (QLevel) would be fed into the IAT to generate scaling and bias tensors. Extensive experiments demonstrate that the proposed I2C method outperforms state-of-the-art variable-rate image compression methods by a large margin, especially after multiple continuous re-encodings with different rates, while having the ability to obtain a very fine variable-rate control without any performance compromise.

11.
Foods ; 13(2)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38254576

RESUMO

It is known that phospholipase C (PLC) enzymatic degumming can hydrolyze phospholipids into diacylglycerol (DAG), which improves the efficiency of oil processing. However, it is unclear whether the presence of DAG and the use of enzymes affect the performance of the oil. This paper evaluated the frying performance of PLC-degummed refined soybean oil. Following the chicken wings and potato chips frying trials, results revealed that after 30 cycles of frying, free fatty acid (FFA) levels were 0.22% and 0.21%, with total polar compounds (TPC) at 23.75% and 24.00%, and peroxide value (PV) levels were 5.90 meq/kg and 6.45 meq/kg, respectively. Overall, PLC-degummed refined soybean oil showed almost the same frying properties as traditional water-degummed refined oil in terms of FFA, PV, TPC, polymer content, viscosity, color, foaming of frying oils, and appearance of foods. Moreover, FFA, TPC, polymer content, foaming, and color showed significant positive correlations with each other (p < 0.05) in soybean oil intermittent frying processing.

12.
Chem Commun (Camb) ; 60(11): 1476-1479, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38224165

RESUMO

Exploring electrocatalysts with high-efficiency oxygen reduction reaction (ORR) is significant for practical applications of fuel cells and metal-air batteries. In this work, a twisted core@shell material has been prepared with helical polypyrrole nanotubes (HPPys) as the core and coordination polymers (CPs) as the shell. After the pyrolysis process, a dense twisted carbon layer was formed by the reaction of CP and HPPy at its interface under Ar. The derived twisted carbonaceous nanotube exhibits good performance in both electrocatalytic ORR and OER. When used as the air-electrode in a flexible Zn-air battery, the battery shows good performance and stability.

13.
IEEE Trans Pattern Anal Mach Intell ; 46(4): 2091-2103, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37971914

RESUMO

Semi-Supervised Few-Shot Learning (SSFSL) aims to train a classifier that can adapt to new tasks using limited labeled data and a fixed amount of unlabeled data. Various sophisticated methods have been proposed to tackle the challenges associated with this problem. In this paper, we present a simple but quite effective approach to predict accurate negative pseudo-labels of unlabeled data from an indirect learning perspective. We leverage these pseudo-labels to augment the support set, which is typically limited in few-shot tasks, e.g., 1-shot classification. In such label-constrained scenarios, our approach can offer highly accurate negative pseudo-labels. By iteratively excluding negative pseudo-labels one by one, we ultimately derive a positive pseudo-label for each unlabeled sample in our approach. The integration of negative and positive pseudo-labels complements the limited support set, resulting in significant accuracy improvements for SSFSL. Our approach can be implemented in just few lines of code by only using off-the-shelf operations, yet it outperforms state-of-the-art methods on four benchmark datasets. Furthermore, our approach exhibits good adaptability and generalization capabilities when used as a plug-and-play counterpart alongside existing SSFSL methods and when extended to generalized linear models.

14.
J Agric Food Chem ; 72(1): 176-188, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38127834

RESUMO

Soil salinity seriously hinders the sustainable development of green agriculture. The emergence of engineered nanomaterials has revolutionized agricultural research, providing a new means to overcome the limitations associated with current abiotic stress management and achieve highly productive agriculture. Herein, we synthesized a brand-new engineered nanomaterial (Cs-Se NMs) through the Schiff base reaction of oxidized chitosan with selenocystamine hydrochloride to alleviate salt stress in plants. After the addition of 300 mg/L Cs-Se NMs, the activity of superoxide dismutase, catalase, and peroxidase in rice shoots increased to 3.19, 1.79, and 1.85 times those observed in the NaCl group, respectively. Meanwhile, the MDA levels decreased by 63.9%. Notably, Cs-Se NMs also raised the transcription of genes correlated with the oxidative stress response and MAPK signaling in the transcriptomic analysis. In addition, Cs-Se NMs augmented the abundance and variety of rhizobacteria and remodeled the microbial community structure. These results provide insights into applying engineered nanomaterials in sustainable agriculture.


Assuntos
Quitosana , Nanoestruturas , Espécies Reativas de Oxigênio , Quitosana/química , Plantas/metabolismo , Estresse Oxidativo , Antioxidantes/metabolismo , Estresse Salino , Salinidade
15.
J Colloid Interface Sci ; 658: 518-527, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38128195

RESUMO

The properties of metal-organic framework (MOF) nanocrystals are highly dependent on their sizes, morphologies, and exposed facets. Facet engineering of MOFs offers an efficient strategy to tailor the active sites and optimize the catalytic activity of both MOFs and their derivatives. In this study, we prepared 1D zeolitic imidazolate framework-nanorod (ZIF-NR) through facet engineering of the parental 2D ZIF-L. The introduction of cetyltrimethylammonium bromide (CTABr) surfactant into the synthesis solution hindered the crystal growth along the c-axis of leaf-like ZIF-L, resulting in the formation of 1D ZIF-NR. The derived Co nanoparticle encapsulated N doped carbon nanorod (denoted as Co-NCR) exhibited high activity and stability for electrocatalytic oxygen reduction reactions and Zn-air batteries. Facet engineering of a 2D MOF with a uniquely oriented layered structure demonstrates the possibility of designing novel electrocatalysts.

16.
Front Microbiol ; 14: 1265308, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38125566

RESUMO

A novel endophytic bacterium, designated DY-R2A-6T, was isolated from oat (Avena sativa L.) seeds and found to produces ß-carotene. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain DY-R2A-6T had 96.3% similarity with Jiella aquimaris LZB041T, 96.0% similarity with Aurantimonas aggregate R14M6T and Aureimonas frigidaquae JCM 14755T, and less than 95.8% similarity with other genera in the family Aurantimonadaceae. The complete genome of strain DY-R2A-6T comprised 5,929,370 base pairs, consisting of one full chromosome (5,909,198 bp) and one plasmid (20,172 bp), with a G + C content was 69.1%. The overall genome-related index (OGRI), including digital DNA-DNA hybridization (<20.5%), ANI (<79.2%), and AAI (<64.2%) values, all fell below the thresholds set for novel genera. The major cellular fatty acids (>10%) of strain DY-R2A-6T were C16:0, C19:0 cyclo ω8c, and summed feature 8 (C18:1ω7c and/or C18:1ω6c). Ubiquinone-10 was the main respiratory quinone. We identified the gene cluster responsible for carotenoid biosynthesis in the genome and found that the pink-pigment produced by strain DY-R2A-6T is ß-carotene. In experiment with Arabidopsis seedlings, co-cultivation with strain DY-R2A-6T led to a 1.4-fold increase in plant biomass and chlorophyll content under salt stress conditions, demonstrating its capacity to enhance salt stress tolerance in plants. Moreover, external application of ß-carotene to Arabidopsis seedlings under salt stress conditions also mitigated the stress significantly. Based on these findings, strain DY-R2A-6T is proposed to represent a novel genus and species in the family Aurantimonadaceae, named Jeongeuplla avenae gen. nov., sp. nov. The type strain is DY-R2A-6T (= KCTC 82985T = GDMCC 1.3014T). This study not only identified a new taxon but also utilized genome analysis to predict and confirm the production of ß-carotene by strain DY-R2A-6T. It also demonstrated the ability of this strain to enhance salt stress tolerance in plants, suggesting potential application in agriculture to mitigate environmental stress in crops.

17.
Artigo em Inglês | MEDLINE | ID: mdl-37910412

RESUMO

The prevalence of stroke continues to increase with the global aging. Based on the motor imagery (MI) brain-computer interface (BCI) paradigm and virtual reality (VR) technology, we designed and developed an upper-limb rehabilitation exoskeleton system (VR-ULE) in the VR scenes for stroke patients. The VR-ULE system makes use of the MI electroencephalogram (EEG) recognition model with a convolutional neural network and squeeze-and-excitation (SE) blocks to obtain the patient's motion intentions and control the exoskeleton to move during rehabilitation training movement. Due to the individual differences in EEG, the frequency bands with optimal MI EEG features for each patient are different. Therefore, the weight of different feature channels is learned by combining SE blocks to emphasize the useful information frequency band features. The MI cues in the VR-based virtual scenes can improve the interhemispheric balance and the neuroplasticity of patients. It also makes up for the disadvantages of the current MI-BCIs, such as single usage scenarios, poor individual adaptability, and many interfering factors. We designed the offline training experiment to evaluate the feasibility of the EEG recognition strategy, and designed the online control experiment to verify the effectiveness of the VR-ULE system. The results showed that the MI classification method with MI cues in the VR scenes improved the accuracy of MI classification (86.49% ± 3.02%); all subjects performed two types of rehabilitation training tasks under their own models trained in the offline training experiment, with the highest average completion rates of 86.82% ± 4.66% and 88.48% ± 5.84%. The VR-ULE system can efficiently help stroke patients with hemiplegia complete upper-limb rehabilitation training tasks, and provide the new methods and strategies for BCI-based rehabilitation devices.


Assuntos
Interfaces Cérebro-Computador , Exoesqueleto Energizado , Acidente Vascular Cerebral , Realidade Virtual , Humanos , Extremidade Superior , Interface Usuário-Computador , Eletroencefalografia/métodos
18.
Sensors (Basel) ; 23(22)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38005614

RESUMO

The use of cloud computing, big data, IoT, and mobile applications in the public transportation industry has resulted in the generation of vast and complex data, of which the large data volume and data variety have posed several obstacles to effective data sensing and processing with high efficiency in a real-time data-driven public transportation management system. To overcome the above-mentioned challenges and to guarantee optimal data availability for data sensing and processing in public transportation perception, a public transportation sensing platform is proposed to collect, integrate, and organize diverse data from different data sources. The proposed data perception platform connects multiple data systems and some edge intelligent perception devices to enable the collection of various types of data, including traveling information of passengers and transaction data of smart cards. To enable the efficient extraction of precise and detailed traveling behavior, an efficient field-level data lineage exploration method is proposed during logical plan generation and is integrated into the FlinkSQL system seamlessly. Furthermore, a row-level fine-grained permission control mechanism is adopted to support flexible data management. With these two techniques, the proposed data management system can support efficient data processing on large amounts of data and conducts comprehensive analysis and application of business data from numerous different sources to realize the value of the data with high data safety. Through operational testing in real environments, the proposed platform has proven highly efficient and effective in managing organizational operations, data assets, data life cycle, offline development, and backend administration over a large amount of various types of public transportation traffic data.

19.
Nucleic Acids Res ; 51(22): 12381-12396, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37930830

RESUMO

Anti-CRISPR (Acr) proteins are encoded by mobile genetic elements to overcome the CRISPR immunity of prokaryotes, displaying promises as controllable tools for modulating CRISPR-based applications. However, characterizing novel anti-CRISPR proteins and exploiting Acr-related technologies is a rather long and tedious process. Here, we established a versatile plasmid interference with CRISPR interference (PICI) system in Escherichia coli for rapidly characterizing Acrs and developing Acr-based technologies. Utilizing the PICI system, we discovered two novel type II-A Acrs (AcrIIA33 and AcrIIA34), which can inhibit the activity of SpyCas9 by affecting DNA recognition of Cas9. We further constructed a circularly permuted AcrIIA4 (cpA4) protein and developed optogenetically engineered, robust AcrIIA4 (OPERA4) variants by combining cpA4 with the light-oxygen-voltage 2 (LOV2) blue light sensory domain. OPERA4 variants are robust light-dependent tools for controlling the activity of SpyCas9 by approximately 1000-fold change under switching dark-light conditions in prokaryotes. OPERA4 variants can achieve potent light-controllable genome editing in human cells as well. Together, our work provides a versatile screening system for characterizing Acrs and developing the Acr-based controllable tools.


Assuntos
Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Humanos , Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas/genética , Edição de Genes , Plasmídeos/genética , Proteínas de Bactérias/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo
20.
J Adv Res ; 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37832845

RESUMO

INTRODUCTION: Biomimetic soft pneumatic actuators (SPA) with Kresling origami patterns have unique advantages over conventional rigid robots, owing to their adaptability and safety. OBJECTIVES: Inspired by cloning and moving behaviors observed from salps, we proposed an SPA based on a Kresling-like pattern with a rigid skeleton. The elongation and output force were tested, and the effectiveness of the applications with the SPA was evaluated. METHODS: The proposed SPA consists of rigid skeletons and a soft skin. The rigid skeletons are constructed using layers of Kresling-like patterns, while a novel extensible inserting structure is devised to replace the folds found in conventional Kresling patterns. This innovative approach ensures that the SPA exhibits axial contraction/expansion motion without any twisting movement. To mimic the bionic characteristics of swimming and ingesting progress of salps, the proposed SPA can perform an axial contraction motion without twisting and a controllable bending motion based on multi-layered Kresling-like patterns; to mimic the cloning and releasing life phenomena of salps, the number of layers of Kresling-like patterns is changeable by adding or reducing skeleton components according to the practical needs. RESULTS: The experimental elongation results on the SPA with multiple layers of Kresling-like patterns show that the elongation can increase to above 162% by adding layers; the experimental output force results show that the three-layer SPA can provide 6.36 N output force at an air flow rate of 10 L/min, and the output force will continue to increase as the number of layers of Kresling-like pattern increases or the air flow rate increases. Further, we demonstrate the applications of the SPA in soft grippers, scissor grippers, claw grippers and pipe crawlers. CONCLUSION: Our proposed SPA can avoid twisting in the radial contraction motion with high elongation and output force, and provide the practical guidance for bio-inspired soft robotic applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA